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Motivating Example: D-Optimal Design

min f(x) := − ln det
(∑m

i=1xiaia
>
i

)
s. t. x ∈ ∆m := {

∑m

i=1 xi = 1, xi ≥ 0, ∀ i ∈ [m]}.
(D-OPT)

B Problem data: m points {ai}mi=1 that span Rn.

B In statistics, (D-OPT) is the continuous relaxation of the (discrete) D-optimal
experimental design problem; in computational geometry, it is the dual problem of
the minimum volume enclosing ellipsoid (MVEE) problem.

B Despite its seemingly simple structure, (D-OPT) is not quite amenable to
(traditional) first-order methods (since f blows up on part of ∂∆m, and has no
L-smoothness property on ∆m).

B Atwood (1973) proposed the following algorithm for solving (D-OPT):
ik ∈ arg mini∈[m]∇if(xk), Gk := −∇ikf(xk)− n,

jk ∈ arg maxj:xk
j
>0∇if(xk), G̃k := ∇jkf(xk) + n,

dk =
{
eik − x

k if Gk > G̃k

xk − ejk otherwise
, xk+1 := xk + αkd

k,

where the stepsize αk ≥ 0 is given by exact line-search.
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The WA-TY Method

B Structurally, this method coincides with the Frank-Wolfe method with Wolfe’s
away-step (1970), and it was rediscovered by Todd and Yıldırım (2005) —
therefore, it is referred to as the WA-TY method.

B Excellent numerical performance:

ASFW-A & ASFW-E (this work): Away-step FW methods for LHB
FW-A & FW-E [Fed72; Kha96; ZFce]: Generalized FW methods for LHB
RSGM-F & RSGM-LS [BBT17; LFN18]: Relatively smooth gradient method
MG [STT78]: Multiplicative gradient method
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Mystery of the WA-TY Method

B The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

B The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on ∆m and ii) f is degenerate on the feasible region.

B This difficulty prevents the recent analyses of the away-step FW (AFW) methods
for L-smooth functions [LJJ15; BS17; PR19], as well as for non-degenerate
generalized self-concordant function [Dvu23] being applied to (D-OPT).

B Some deeper questions:
• What is the essential structure of (D-OPT) that drives the linear convergence of the

WA-TY method (or the AFW method)?
• Can it help us develop and analyze a new type of AFW methods for an

“unconventional” class of problems?

B In this work, we will provide affirmative answers to the questions above.
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Problem of Interest

F ∗ := minx∈X [F (x) := f(Ax) + cx] (P)

B X and Y are finite-dimensional vector spaces

B X ⊆ X is a polytope such that X = conv(V), where V is a finite set of atoms

B f : Y→ R ∪ {+∞} is a θ-log-homogeneous self-concordant barrier (θ-LHSCB) for
some regular cone K ⊆ Y

B A : X→ Y is a linear operator such that A(X ) ⊆ K and A(X ) ∩ intK 6= ∅

B c· : X→ R is a linear function

B Besides D-optimal design, other applications include
• Budget-constrained D-optimal design
• Positron emission tomography
• (Reformulated) Poisson image deblurring with TV-regularization
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θ-LHSCB (logarithmically-homogeneous self-concordant barrier)

B Let K $ Y be a regular cone, i.e., K is closed, convex, pointed and has nonempty
interior.

B Two prototypical examples:
• f(Y ) = − ln det(Y ) for K := Sn+ and θ = n,
• f(y) = −

∑m

j=1 wj ln(yj) for K := Rm+ and θ =
∑m

j=1 wj (where w1, . . . , wn ≥ 1).

B f is a θ-LHSCB on K with complexity parameter θ ≥ 1, if f is three-times
continuously differentiable and non-degenerate on intK, and satisfies

1
∣∣D3f(y)[w,w,w]

∣∣ ≤ 2‖w‖3y ∀ y ∈ intK, ∀w ∈ Y,
2 f(yk)→ +∞ for any {yk}k≥1 ⊆ intK such that yk → u ∈ bdK,
3 f(ty) = f(y)− θ ln(t) ∀ y ∈ intK, ∀ t > 0.

where ‖w‖y := 〈∇2f(y)w,w〉1/2 denotes the local norm of w at y ∈ intK.
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θ-LHSCB (logarithmically-homogeneous self-concordant barrier)

B Let K $ Y be a regular cone, i.e., K is closed, convex, pointed and has nonempty
interior.

B Two prototypical examples:
• f(Y ) = − ln det(Y ) for K := Sn+ and θ = n,
• f(y) = −

∑m

j=1 wj ln(yj) for K := Rm+ and θ =
∑m

j=1 wj (where w1, . . . , wn ≥ 1).
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Away-step Frank-Wolfe Method for solving (P)

I Input: x0 ∈ X ∩ domF , β0 ∈ ∆|V| such that x0 =
∑

v∈V β
0
vv, S0 := supp(β0).

I At iteration k ≥ 0:
. (FW direction) Compute vk ∈ arg minx∈V 〈∇F (xk), x〉, dkF := vk − xk and
Gk := 〈−∇F (xk), dkF〉. If Gk = 0, then STOP.

. (Away direction) If |Sk| > 1, compute ak ∈ arg maxx∈Sk
〈∇F (xk), x〉,

dkA := xk − ak and G̃k := 〈−∇F (xk), dkA〉.

. (Choose direction) If |Sk| = 1 or Gk > G̃k, let dk := dkF and ᾱk := 1; otherwise,
let dk := dkA and ᾱk := βkak/(1− βkak ).

. (Choose stepsize) Choose αk ∈ (0, ᾱk] in one of the following two ways:
• Adaptive stepsize: Compute rk := −∇F (xk)dk and Dk := ‖Adk‖yk . If Dk = 0,

then αk := ᾱk; otherwise, αk := min{bk, ᾱk}, where bk := rk/(Dk(rk +Dk)).
• Exact line-search: αk ∈ arg minαk∈(0,ᾱk] F (xk + αdk).

. (Update iterates) Update xk+1 := xk + αkd
k and βk+1 ∈ ∆|V| such that

xk+1 =
∑

v∈V β
k+1
v v, and let Sk+1 := supp(βk+1).
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• Exact line-search: αk ∈ arg minαk∈(0,ᾱk] F (xk + αdk).
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Some Remarks

Denote dimX = n.

B Depending on X , we may prefer to solve minx∈V 〈∇F (xk), x〉 either by either
minimizing over X (e.g., X =

∏n

i=1[ai, bi]) or V (e.g., X = ∆n).

B The FW-gap Gk = ∇F (xk)xk − vk provides an effective stopping criterion:
Gk ≥ [δk := F (xk)− F ∗] for k ≥ 0.

B If |V| = ω(n), we may prefer to maintain a compact representation of Sk such that
|Sk| = O(n) for k ≥ 0, at computational cost of O(n2) per iteration [BS17].

B For all applications of interest, computing Dk = ‖Adk‖yk = ∇2F (xk)dkdk1/2 takes
O(n) times, instead of O(n2) time.
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Computational Guarantees

F ∗ := minx∈Rn [F (x) := f(Ax) + cx]

B Define B := maxx,x′∈X cx− x′ (the variation of c· on X ).

B Define q := min{|W| : W ⊆ V such that convW ∩ domF 6= ∅}.

B Define Y := A(X ) and RY(y∗) := supy∈A(X ) ‖y − y∗‖y∗ < +∞.

Global linear convergence of {δk}k≥0:

B {δk}k≥0 is strictly decreasing (until termination).

B For all k ≥ 0, define keff := dmax{(k − |S0|+ q)/2, 0}e ≈ k/2, and then

δk ≤ (1− ρ)keff δ0, where ρ := min
{

1
5.3(δ0 + θ +B) ,

µΦ(X ,X ∗)2

42.4(θ +B)2

}
,

where
• µ is the quadratic-growth constant of f on Y that only depends on RY(y∗)
• Φ(X ,X ∗) > 0 is a geometric constant about X ∗ and X .

B All the quantities defining ρ are affine-invariant and norm-independent.
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• µ is the quadratic-growth constant of f on Y that only depends on RY(y∗)
• Φ(X ,X ∗) > 0 is a geometric constant about X ∗ and X .

B All the quantities defining ρ are affine-invariant and norm-independent.
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Computational Guarantees
Global linear convergence of {Gk}k≥0:

For some (affine-invariant) D̄ < +∞ and all k ≥ 0, we have

Gk ≤

{
4(1− ρ)keff δ0 max{D̄, 1}, if δk > 1

4
√

1− ρkeff
√
δ0 max{D̄, 1}, if δk ≤ 1

.

Essentially, this means {Gk}k≥0 converges at the linear rate
√

1− ρ, which is worse
than the rate of {δk}k≥0, namely (1− ρ).
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Improved local linear rate

B Let X ∗ 6= ∅ denote the set of optimal solutions of (P)

B There exists a face of X , denoted by F , such that for any x∗ ∈ X ∗, if x ∈ X , then
∇F (x∗)x− x∗ = 0 ⇐⇒ x ∈ F .

B Define ∆F := maxx∗∈X∗ minv∈V\F ∇F (x∗)v − x∗ > 0.

Land on F in finite iterations:

Let k̄ ≥ 0 satisfy that
δk̄ < min{V (∆F , RY(y∗)),minv∈V\FF (v)− F ∗}.

For all k ≥ k̄, if xk 6∈ F , then
B Sk+1 ⊆ Sk, when either exact line-search or adaptive stepsize is used in Step 7,
B Sk+1 = Sk \ {ak} for some ak ∈ Sk ∩ V̄F , when exact line-search is used in Step 7;
otherwise, if xk ∈ F , then xl ∈ F for all l ≥ k.
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Another Example: Positron Emission Tomography

maxx∈∆n

{
F (x) :=

∑m

j=1 pj ln(a>j x)
}

(PET)

B Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

B For all j ∈ [m], let pj > 0, aj ∈ Rn+, aj 6= 0 and
∑m

j=1 pj = 1.
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Thank you!
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[PR19] Javier Peña and Daniel Rodŕıguez. “Polytope Conditioning and Linear Convergence of
the Frank–Wolfe Algorithm”. In: Math. Oper. Res. 44.1 (2019), pp. 1–18.

[STT78] S.D. Silvey, D.H. Titterington, and B. Torsney. “An algorithm for optimal designs on
a design space”. In: Commun. Stat. Theory Methods 7.14 (1978), pp. 1379–1389.

Renbo Zhao (UIowa) Away-step FW for Log-Homogeneous Barrier 14 / 15



References

[ZFce] Renbo Zhao and Robert M. Freund. “Analysis of the Frank-Wolfe Method for Convex
Composite Optimization involving a Logarithmically-Homogeneous Barrier”. In:
Math. Program. (accepted, 2022).

[ZZS13] Ke Zhou, Hongyuan Zha, and Le Song. “Learning Social Infectivity in Sparse
Low-rank Networks Using Multi-dimensional Hawkes Processes”. In: Proc. AISTATS.
2013, pp. 641–649.

Renbo Zhao (UIowa) Away-step FW for Log-Homogeneous Barrier 15 / 15


